THE DARTMOOR
ARCHAEOLOGY AND BRACKEN PROJECT

INTERIM REPORT FOR 2008 SEASON
List of Figures

Front Cover Revealing the plough marks
Figure 1 Map showing the location of Trench 10, soil pits and transects
Figure 2 Recording the position of bracken plants
Figure 3 Contour surveying the level below the rhizome mat
Figure 4 Three contour surveys recorded at crucial stages of the excavation
Figure 5 Plan showing the distribution of bracken plants in the excavated area
Figure 6 The rhizome mat revealed
Figure 7 Plan showing the rhizome mat (black) and distribution of plants (red)
Figure 8 Plan showing the distribution of bracken plants (red), rhizomes (black) and deposits greater than 14cms deep
Figure 9 The edges of Trench 10 illustrating the character of the rhizome mat and deposits
Figure 10 A series of illustrations highlighting the amount of rhizome displacement in each section
Figure 11 Series of contour plans illustrating the depths of soil removed during three phases of the excavation
Figure 12 Revealing the faint traces of historic ploughing.
Figure 13 Faint traces of ploughing cover much of the northern half of the site
Figure 14 Plan of the plough marks and position of post hole
Figure 15 The excavated plough marks and sockets. View from north west.
Figure 16 Utility post hole (part excavated)
Figure 17 Tension rod for cable guy
Figure 18 Excavated utility post hole
Figure 19 Sondage. Mottled surface immediately below the topsoil
Figure 20 Sondage. Mottled surface after removal of a further 2cms
Figure 21 Sondage. A linear pattern is revealed, suggesting roots or rhizomes were responsible
Figure 22 East facing edge of sondage
Figure 23 South facing edge of sondage
Figure 24 Plan illustrating the position of artefacts recovered in Trench 10
Figure 25 Transects across the round house and environs
Figure 26 Trench 11. North and west facing sections.
Figure 27 Trench 11. North facing section
Figure 28 Trench 11. West facing section
Figure 29 Trench 12. South east and north east facing sections
Figure 30 Trench 12. SE facing section
Figure 31 Trench 12 NE facing section
Figure 32 Trench 12. Shallow depression cut into subsoil. View from above and south west.
Figure 33 Plan of Teigncombe round house highlighting the principal structures and features
Figure 34 A pair of rhizomes cutting across the plough marks
Table 1 Summary of information relating to the Teigncombe Round Houses and Trench 10
Introduction

It is hard to believe that the ninth season of work at Teigncombe has passed and even more unbelievably the weather was worse than during the previous year. In particular, heavy rain combined with strong winds did their utmost to disrupt our endeavours. For the first time since 2005, excavation formed the focus of our activities and a 5m by 5m trench [Trench 10] was opened within the coaxial field system a short distance downslope of Teigncombe II. This, our tenth trench at Teigncombe was excavated to answer a number of questions raised by our work at Teigncombe I. Limited excavation in 2006 reported in the Interim Report for 2007 has indicated that an archaeological layer of unknown date survives between the topsoil and subsoil. The interiors of many prehistoric fields on Dartmoor are recognised as containing important archaeological information and the potential survival of possible prehistoric layers relating to agricultural activity at Teigncombe is worth investigating to establish the nature of the layer and whether it has been altered by later activity including cultivation and rhizomes. The uncontained nature of the area selected for excavation combined with its location a short distance below a reave and close proximity to a prehistoric round house meant that the chances of a more typical Dartmoor stratigraphy would be encountered and that whilst the archaeology would not be as complex as within a round house, enough would be encountered to allow a more rapid and less distracted analysis of the impact of bracken on an archaeological deposit.

Another reason for choosing an area without obvious structural remains was to provide some interpretative guidance for our work at Teigncombe I. In the lower levels at Teigncombe I a number of contexts were revealed which could not be definitively interpreted as artificial or natural. The opportunity offered by an open area excavation of a nearby much less intensively used piece of ground was felt to offer an opportunity to explain at least some of the features previously encountered. The excavation also offered us a chance to examine the character of the ground into which the Teigncombe I house was inserted. Excavation into a slope of similar gradient could offer us an insight into the challenges that the original builders would have faced when creating the scoop to receive their stone building.
In common with every year, research has not been limited to the excavation and progress on the post-excavation analysis has been achieved. The substantial quantities of data collected at the Teigncombo round house continue to be checked, correlated and scrutinised. However, much remains to be completed and this is the main reason that the active phase of field data collection has to stop for the moment. A full assessment and presentation of our findings is required to establish the significance of our work and what form the next stage in the project should take. Volunteers for specific tasks are being sought and if you would like to find out more about the post-excavation process and how you might be able to help, please get in touch with Janet Daynes.

Methodology

Selection of Site
The 2008 excavation was a direct consequence of the post-excavation work carried out during the winter of 2007. Analysis of the interface between the prehistoric occupation surfaces and the underlying natural subsoil revealed that it was sometimes difficult to be sure what was natural and what was not. The idea of looking at a relatively undisturbed area was born and naturally the opportunity to look at what bracken rhizomes were capable of in an unconfined location with relatively shallow stratigraphy seemed not only logical but necessary. The stratigraphy at Teigncombe I was atypical, the archaeology extraordinarily rich and whilst this has been extremely rewarding it has distracted us from our primary aim of assessing the impact of bracken rhizomes on archaeology. For this work to proceed we needed a site that fulfilled a number of criteria.

- In the Teigncombe area. This would ensure that the underlying geological conditions were similar.
- In the coaxial field system. This would mean that the chances of encountering some archaeology were high. For an assessment of the impact of the rhizomes on archaeology at least some features needed to be found.
- An area with bracken. Bracken is confined to relatively small areas at Teigncombe and the choices were therefore limited.
- An area with relatively shallow stratigraphy.
- An area where archaeology was thought to survive. Previous work had indicated that archaeology survived in the area downslope of the Teigncombe II round house.

Only one area fulfilled all these criteria and early in 2008 the site of the excavation was chosen.
Figure 1 Map showing the location of Trench 10, soil pits and transects. North at top.

Recording Bracken plants
Unfortunately it was not possible to measure the height of the plants and instead the pre-excavation recording of the plants was limited to planning the position of the 471 plants identified within the 5m by 5m trench. The size of the trench was determined by the need to obtain an overview of the rhizome mat, to maximise the chances of finding any archaeology and understanding the underlying subsoil and the available resources.

Figure 2 Recording the position of bracken plants
Contour Surveys

Essential for examining the depth of the rhizomes and deposits are a series of contour surveys at different stages during the investigation. The first contour survey was carried out to establish the character of the ground surface prior to excavation. The second contour survey was carried out immediately below the rhizome mat and the final one at the interface between the topsoil and subsoil.

Figure 3 Contour surveying the level below the rhizome mat

Figure 4 Three contour surveys recorded at crucial stages of the excavation. North west at top.
Excavation
In order to minimise damage to the upper parts of the rhizome mat the turf was mainly removed by hand trowelling. The topsoil was then removed carefully by trowelling alone exposing the rhizome mat which was then planned using photogrammetry. The rhizomes were then removed 1m square at a time and the length of rhizomes in each square measured. The second contour survey was then conducted before removal of the remaining topsoil. Exposure of the upper level of the subsoil revealed a substantial number of linear topsoil filled features, particularly in the upper part of the trench. These were carefully cleaned, photographed, recorded and then excavated. The final contour survey was carried out at this stage. Apart from the linear features a cluster of stones in the middle of the trench was investigated revealing a substantial post hole. In the south east corner of the trench a small sondage was opened to investigate an area of particularly mottled soil. The excavation was hampered by atrocious weather conditions and the full investigation of the subsoil was sadly curtailed.

The Results

Bracken Plants
A total of 471 plants were recorded within Trench 10. In common with the other plans of bracken plants the distribution was clustered and in places a linear element is apparent. This linear pattern reflects the character of the underlying rhizome mat. Also of interest are the small areas with no plants.

Figure 5 Plan showing the distribution of bracken plants in the excavated area. North west at top.
The Rhizome Mat
It took 10 days of painstaking and careful excavation to reveal the underlying rhizome mat.

Figure 6 The rhizome mat revealed.

Superimposition of the bracken plant distribution over the resulting rhizome mat plan [Figure 7] provides as one might expect a close visual correlation between the mat and plants. A total length of 1,079.23m of rhizomes were recovered from Trench 10. Comparisons with the rhizome mat at Teigncombe I indicate that the mat excavated in 2008 is much less dense than at Teigncombe I. In broad terms the average rhizome density at Teigncombe I was 117.6m per square metre, whilst at Trench 10 a density of 43.16m per square metre was recorded [Appendix 1]. The mat at Teigncombe I was therefore 2.7 times more dense. This is not a surprise given that the average depth at the round house deposits was 94.66cms compared with 19.64cms in Trench 10.

Figure 7 Plan showing the rhizome mat (black) and distribution of plants (red). North west at top.
The density of rhizomes does appear to be related to the soil depth as is shown by Figure 8 which highlights the area of the Trench 10 with deposits greater than 14cms deep.

![Figure 8 Plan showing the distribution of bracken plants (red), rhizomes (black) and deposits greater than 14cms deep. North west at top.](image)

The edges of the excavation trench provided another insight into the character and extent of the rhizome mat. Each of the exposed sections was drawn at 1:10 and clearly illustrate the relatively narrow nature of the rhizome mat within an unconfined shallow stratigraphy. This extent is different to that observed within the excavated round house where substantial numbers of rhizomes were encountered at considerable depths. However, this illustration does demonstrate that there are a small number of rhizomes close the interface between the topsoil and subsoil and within the sondages at the end of the west and north facing sections it is clear that the rhizomes have penetrated the archaeologically sensitive layer. These sections demonstrate that even within unconfined shallow contexts rhizomes are causing damage. In this case 0.6% has been displaced.
Figure 9 The edges of Trench 10 illustrating the character of the rhizome mat (red) and deposits.

Utilising the information from these sections it is possible to create a series of illustrations highlighting the quantity of bracken displacement relative to the interface between the topsoil and subsoil which is the part of the profile at which significant archaeological information is known to survive. The distance above this interface to each rhizome was measured and the data collected entered onto a spreadsheet for each of the sections. This provides an easy to understand way of examining the impact of rhizomes at different depths. The results of this work are presented in Figure 10. The illustrations highlight clear differences between the sections.

In the south facing data there are no rhizomes within the immediate vicinity of the archaeological layer and much of the rhizome mat is between 4cm and 14cm above the interface. Damage to archaeology along this transect is likely to be negligible, although because the lower layer was not investigated we cannot be entirely certain.

In the west facing illustration, the rhizomes extend into the archaeology in the sondage and the large numbers of rhizomes in the area above the interface strongly suggests that in those parts of the profile which were not excavated further damage will have occurred. The rhizome mat is much lower in the profile than in the south facing section, being situated only 2 – 6cms above the sensitive interface.

Within the east facing section there is a very marked concentration of rhizomes between 3cm and 5cm above the archaeological layer. There are also some within the archaeological layer. This layer was not fully excavated and a small number of additional rhizomes would have been found at depth.
The rhizome mat in the north facing section is much thicker than in the other three. It was found between 3cm and 14cm above the interface. The rhizomes found up to 6cm below the interface in this section reflect the presence of the sondage. If the deposits had been removed to this depth throughout the trench the amount of displacement within the archaeological layer would have been greater. The total illustration brings together the data from all four sections and graphically illustrates that the rhizome mat was between 2cm and 8cm above the archaeological layer. The small amount of disturbance within the archaeological layer is mainly from the sondages. The graph does however illustrate that the amount of damage would have been below 15 square centimetres per vertical centimetre (ie. less than 3% of total volume).
Contour Surveys
The three separate contour surveys carried out during the course of the excavation allow visual comparisons of the depths of soil encountered. Analysis of the results by Bill Radcliffe has enabled the production of a series of illustrations showing the depth of soil. The first shows the depth of soil associated with the rhizome mat. This illustrates that the rhizome mat varied in depth. The second the total depth of deposits removed within the trench [with the exception of the post-hole which was excavated after the survey]. This indicates that the greatest depth of material was removed from the southern and eastern half of the site. It is probably no coincidence that this represents the lower parts of the trench. The third illustrates the relatively shallow layer of material removed below the rhizome mat. It is clear that there was less than 4cms of soil between the base of the mat and the surface of the subsoil demonstrating the close proximity of the mat with an important archaeological interface. Regular contour surveys have formed an important element of our work over the years and have proven a useful tool in determining the depth of rhizome layers.

Figure 11 Series of contour plans illustrating the depths of soil removed during three phases of the excavation. North west at top.
Plough Marks
Careful removal of the thin layer of topsoil below the rhizome mat revealed the upper surface of the sub-soil. In the northern part of the trench, a series of faint, parallel linear bands of dark brown soil were encountered. These were carefully trowelled to reveal a clear pattern.

![Figure 12 Revealing the faint traces of historic ploughing.](image1)

![Figure 13 Removal of the topsoil revealed faint traces of ploughing covering much of the northern half of the site. The cluster of stone represents the site of the utility post hole.](image2)

This layer was planned using photogrammetry and the resulting drawing illustrates the character of the archaeology encountered.
Excavation of the plough marks revealed that they were up to 3cm deep and contained topsoil. In a number of locations small pockets of topsoil were encountered and these were interpreted as stone sockets where a stone had been displaced during ploughing and the resultant hole had filled with topsoil. Excavation of the plough marks and associated holes revealed the character of the subsoil.

Figure 14 Plan showing the plough marks and position of post hole North west at top.
Dating of the plough marks was not possible. The largest ones lead north east to south west, but narrower ones leading WNW to ESE indicate that at least two episodes of ploughing are apparent. Despite appearances, the traditional criss-cross evidence for prehistoric ploughing is probably not present and it is more likely (although much less exciting) to conclude that the ephemeral evidence recovered relates to historic activity within the field. For our purposes it really does not matter whether the ploughing is prehistoric or historic. The crucial question is what impact have the bracken rhizomes had on this ephemeral archaeology? This question and the resulting answer is the important consequence of our work in 2008 and is properly dealt with below in the conclusion.

Post Hole

A perfectly circular post hole measuring 0.5m in diameter and over 0.9m deep was revealed in the centre of the trench. The upper part of the post hole had been backfilled with stones and on its western side was a spread of light orange-brown subsoil. Excavation of the hole provided both dating and functional information. Within the loose fill a metal tensioning rod for a cable guy line was found indicating that the hole had supported a utility pole. When the pole was pulled out, the redundant guy line tensioning rod was thrown into the empty hole which was then backfilled with soil and stones. The post hole had clearly been cut with a borer and the soil deposited in a heap on the western side of the pole. No rhizomes were found within the post-hole, perhaps confirming that the bracken infestation in this area was relatively new.
Stake Hole
A solitary stake hole was found near to the post-hole. This hole measured 7cm north to south by 4cm east to west, 14cm deep and may have been formed during the works associated with the erection of the utility pole. Indeed it may even have been the guy line anchor for the utility pole.

Sondage
Within the south eastern corner of the trench considerable evidence of mottling (reminiscent of stake hole evidence found at Teigncombe I) was revealed during trowelling of the upper surface of subsoil. A small sondage was opened adjacent to the south east corner of the trench in order to investigate these anomalies. This work revealed that the mottling was amorphous in character and a result of natural soil processes.
Figure 19 Mottled surface immediately below the topsoil

Figure 20 Mottled surface after removal of a further 2cms

Figure 21 Further excavation revealed a linear pattern, suggesting roots or rhizomes were responsible.
Artefacts
Twenty-seven artefacts were found during the course of the excavation in 2008. Twenty-five of these were found in Trench 10 and the remaining two in Trench 12. The finds from Trench 10 (with the exception of those associated with the utility pole) were typical of those one would expect to find incorporated into the topsoil of an agricultural field. Evidence for post-medieval manuring included coal (2000, 2001, 2019 and 2022); pottery (2005, 2011, 2016, 2017, 2018, 2020, 2021 and 2023) and a pipe stem (2006). Plastic (2002 and 2007) and glass (2003), are more likely to belong to the intensive use of the area as a fur farm in the early part of the 20th century, whilst stones (2014 and 2026) and black crystal (2015) are probably entirely natural. Wire (2008, 2009, 2010, 2012 and 2013) and the tensioning rod (2027) are associated with the erecting and dismantling of the utility pole. The remaining two artefacts were a flint (2024) and pottery sherd (2025) which are more fully considered below (pages 21-22).
Figure 24 Plan illustrating the position of artefacts recovered in Trench 10.
Transect Survey

In the Interim Report for 2007 there are a pair of transect surveys illustrating the morphological context of the Teigncombe II roundhouse. The opportunity was taken during 2008 to enhance this work by extending the NW to SE transect to include the character of the slope downhill from the round house and the nearby field wall and droveway. The results of this work are illustrated in Figure 25 and demonstrate the character of the site and its immediate environs. The position of these transects is shown in Figure 1.

![Figure 25 Transects across the round house and environs.](image-url)
Soil pits
The excavation of the 2008 cess pit a small pit proved much more problematic than in previous years. The first two attempts revealed archaeological deposits. Both these pits were cleaned up and two of the sections exposed in each pit were recorded and assigned trench numbers.

Trench 11
In the north east corner of this trench a 0.54m by 0.3m and 0.12m deep hollow cut into the subsoil and filled with layers of dark silty soil was revealed, excavated and recorded. No dating material was recovered and therefore the date of this feature or its purpose could not be determined. The trench was situated on a slight terrace and may have therefore been the site of more intensive activity in prehistoric times. It may also be significant that this locale represents an area of hillwash accumulation where the topsoil was found to be between 0.3m and 0.4m deep. Evidence of prehistoric evidence is much more likely to survive in this type of situation. Given the excellent conditions and proximity to a round house it is therefore not surprising that archaeological evidence was found and further work would almost certainly provide an insight into the character of activity within this area.

Figure 26 Trench 11. North and West facing sections.

Figure 27 Trench 11. North facing section

Figure 28 Trench 11. West facing section

Trench 12
Layers found below the topsoil are almost certainly the result of historic or prehistoric activity within this area. A worked flint and pottery sherd found within the north-east facing section indicate arable agricultural within this field in the post-medieval period. The flint in common with many recovered from the Teigncombe round house excavation had been a re-deposited and would have originally come from the slope above. In one part of the trench granite bedrock was encountered immediately below the topsoil. Elsewhere, layers were encountered and the lowest of these was a very dark brown gritty silt filling a very slight hollow cut into the subsoil [Figure 32]. This trench confirmed the presence of archaeological deposits and features on the terrace downslope of Teigncombe II.
Figure 29 Trench 12. South east and North east facing sections. F denotes the position of a worked flint [2024] and P a sherd of pottery [2025].

Figure 30 Trench 12. SE facing section

Figure 31 Trench 12. NE facing section

Figure 32 Trench 12. Shallow depression visible cut into subsoil. View from above and south west.
Post Excavation
Progress on post-excavation has been limited this year. Work on the 2008 season has been largely completed, some final illustrations have been finished and the databases checked for consistency. The bulk samples have been examined and the report is eagerly awaited. Analysis of the pottery has started and significant progress is being made. The illustration below is typical of the progress that has been made towards producing the final report. It is anticipated that all illustrations and databases will be completed by the end of March 2010.

Figure 33 Plan of Teigncombe round house highlighting the principal structures and features.
Conclusion (The important bit)
The 2008 excavation season was targeted towards examining the impact of bracken rhizomes on archaeological remains with a shallow stratigraphy. Much of Dartmoor’s archaeology is protected by a very thin layer of soil and the aim of this season was to establish the possible impact of rhizomes on archaeology in this type of situation. The conclusion was unambiguous. Despite the plough marks being less than 20cm below the surface and being very delicate they had only been very slightly damaged by rhizome activity. Indeed the degree of impact was limited to two short lengths of rhizome cutting through the sensitive archaeological layer and this degree of damage was not sufficient in this instance to affect our understanding.

![Figure 34 A pair of rhizomes cutting across the plough marks.](image)

It should however be emphasised that this result will not necessarily apply to all “unconfined” shallow archaeological remains either on Dartmoor or the rest of the country. It does however indicate that it is possible for bracken to be present in this type of situation and not be causing any significant damage. In recent years Trench 10 was covered in dense gorse and interestingly no specific evidence for damage caused by this was found either. The gorse cover may however have restricted bracken growth and therefore it may be that the rhizomes have not penetrated to the same extent if they had been in an uncompetitive open moorland setting. This discovery however indicates that we cannot assume that bracken is always actively damaging underlying archaeological remains. At the Teigncombe round house excavation it was demonstrated that the underlying archaeological deposits were protected by the deep stratigraphy, whilst in Trench 10 the rhizome mat was much shallower and largely confined to the topsoil with only limited penetration into the archaeology. We have certainly convincingly demonstrated at both sites that bracken rhizomes do damage archaeology, but the extent of this damage in these instances has been minor. The work at Teigncombe I did however reveal what damage bracken rhizomes are capable of. On the one hand we witnessed the dense present day rhizome mat and more significantly found considerable evidence of the impact of an earlier mat on the occupation surfaces within the house. This contradictory evidence highlights that as might have been expected that the degree of damage being
caused to archaeological deposits will vary considerably. Our work to date appears to indicate three possible scenarios:

- Established bracken on confined shallow deposits is likely to cause considerable damage as witnessed by the historic rhizome activity at Teigncombe I.
- Established bracken on deep deposits is likely to cause only limited damage as witnessed by the present day rhizome activity at Teigncombe I.
- Bracken on shallow unconfined stratigraphy is likely to cause only limited damage as witnessed by our work at Trench 10.

Primary amongst the aims of the Dartmoor Archaeology and Bracken Project is the quantification of the damage being caused to archaeology by bracken rhizomes. Further work will be needed to refine the figures, but currently it would appear that the degree of damage varies considerably depending on a number of inter-related factors. In the three situations highlighted above the percentage of disturbance to the archaeology appears to be in the order of:

- Between and 4.5% and 23% for bracken on confined shallow deposits¹
- Between 0.38% and 1.06% for bracken on deep deposits (greater than 0.56m deep)²
- Between 0.15% and 0.6% and certainly less than 3% on shallow unconfined deposits³

These figures need to be treated with caution. They are based on a single piece of work within each environment and the degree of variation caused by geomorphology, geology and aspect is not known. These figures also do not take into account the amount of additional animal burrowing caused by the presence of a protective cover and they take no account of the damage caused by chemical processes and should therefore be seen as representing the minimal impact. This said, the substantial differences in the figures do indicate that the threat to archaeological deposits from bracken rhizomes is not uniform. Most damage is likely to be caused in confined shallow deposits. On Dartmoor building interiors are most likely to be affected, whilst the interior of the large scale field systems less so. Our work, to date, has demonstrated that wherever bracken is found the underlying archaeology is being damaged. The degree of damage varies considerably from the catastrophic to the minimal, but in every instance archaeological information is being lost. Decisions on whether these losses are acceptable or need to be addressed are the remit of historic environment managers. The Dartmoor Archaeology and Bracken project has demonstrated that bracken does destroy archaeology and has provided a degree of quantification of the impact in three situations.

¹ These figures are derived from the post-excavation analysis carried out after the first two seasons at Teigncombe and previously presented in The Dartmoor Archaeology and Bracken Project – Interim Reports for 1999 (particularly page 26) and 2000 (particularly pages 15-17).

² These figures are derived from the from the post-excavation analysis carried out after the second season at Teigncombe and previously presented in The Dartmoor Archaeology and Bracken Project – Interim Report for 1999 (particularly pages 20-22)

³ This first figure is based on the percentage of damage caused by rhizomes to the “plough mark” level in Trench 10 where within an area of 60,000 square centimetres, 98 square centimetres had been destroyed by rhizome activity. This figure must be considered as being towards the lower end of any range, because the bracken infestation was relatively modern and the density of plants (and therefore rhizomes) was lower than that found in most locations. The second figure is derived from the observed impact of rhizomes on the sondage (page 9). The third figure comes from the measurements of rhizomes in the four Trench 10 sections (pages 10-11).
Future Work
It is fully accepted that a single piece of work in each of the three environments examined so far cannot be considered to have provided the definitive answer on how much damage bracken is causing. The results to date confirm that damage is being caused and hopefully provide an insight into the approximate extent. Until more research is conducted in a wider variety of sites it will not be possible to understand the full range of impacts of bracken on archaeological information. With hindsight it is clear that the excavations at Teigncombe I have slowed down the progress of work in understanding the impact of bracken within a wider framework. This said, the excavations at Teigncombe have provided an extremely valuable bedrock on which future work more specifically targeted at the bracken can be conducted. In particular, the excavations in 2008 have illustrated what can be achieved and could form the basis for the development of a more rapid assessment methodology. The next phase of the project must be a series of small scale excavations in a variety of locations utilising the lessons from Teigncombe to gather the information in a much more efficient and targeted manner to find out whether the results from Teigncombe are typical or not. The results of this phase will certainly help inform future management strategies on Dartmoor and elsewhere for years to come.

Appendix 1

In the Interim Report for 2006 a table was produced highlighting differences between the bracken at the two round houses. For comparative purposes it is useful to add the fresh information to this table.

Table 1 Summary of information relating to the Teigncombe Round Houses and Trench 10

<table>
<thead>
<tr>
<th></th>
<th>TEIGNCOMBE I</th>
<th>TEIGNCOMBE II</th>
<th>2008 TRENCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>SX 66802 86551</td>
<td>SX 66772 86784</td>
<td>SX 66784 86798</td>
</tr>
<tr>
<td>Height above sea level</td>
<td>375m</td>
<td>367m</td>
<td>365m</td>
</tr>
<tr>
<td>Aspect</td>
<td>55 degrees</td>
<td>90 degrees</td>
<td>90 degrees</td>
</tr>
<tr>
<td>Internal diameter of house</td>
<td>9m</td>
<td>8.7m</td>
<td>N/A</td>
</tr>
<tr>
<td>Area of house (or trench)</td>
<td>64.60m²</td>
<td>59.41m²</td>
<td>25 m²</td>
</tr>
<tr>
<td>Average wall width</td>
<td>1.4m</td>
<td>1.6m</td>
<td>N/A</td>
</tr>
<tr>
<td>Maximum height (pre excavation)</td>
<td>1.3</td>
<td>1.2m</td>
<td>N/A</td>
</tr>
<tr>
<td>Walling type</td>
<td>Double orthostatic</td>
<td>Double orthostatic</td>
<td>N/A</td>
</tr>
<tr>
<td>Door</td>
<td>Faces 95 degrees</td>
<td>Faces 180 degrees</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of plants</td>
<td>2219</td>
<td>969</td>
<td>471</td>
</tr>
<tr>
<td>Density</td>
<td>34.60 plants per m²</td>
<td>16.31 plants per m²</td>
<td>18.84 plants per m²</td>
</tr>
<tr>
<td>Maximum density per m²</td>
<td>71 plants per m²</td>
<td>33 plants per m²</td>
<td>34 plants per m²</td>
</tr>
<tr>
<td>Average height</td>
<td>1.43m</td>
<td>1.62m</td>
<td>N/A</td>
</tr>
<tr>
<td>Total height</td>
<td>3,314m</td>
<td>1,566m</td>
<td>N/A</td>
</tr>
<tr>
<td>Average length of rhizome per Plant</td>
<td>5.01m</td>
<td>Unknown</td>
<td>2.29m</td>
</tr>
<tr>
<td>Average length of rhizomes per m²</td>
<td>117.60m</td>
<td>N/A</td>
<td>43.16m</td>
</tr>
<tr>
<td>Total length of rhizomes</td>
<td>7,596.91m</td>
<td>4,854m (extrapolated)</td>
<td>1,079.23m</td>
</tr>
</tbody>
</table>
Acknowledgements
ACE Archaeology Club would like to thank everyone who helped and supported this year’s work at Teigncombe, it would have been impossible without them.

We are indebted to Mr and Mrs Edmondson the landowners, who have put up with our annual invasion on nine occasions.

Devon Archaeological Society very kindly let us borrow the usual essential equipment, for which we are most grateful.

Thanks also to the Dartmoor National Park authority for their continuing financial support, without this contribution our work would not have been possible.

Thanks to the ACE members who loaned their personal kit to make our two weeks comfortable, they are:

Mac and Wendy Howard, who provided ACE with a fabulous mess tent for which we are very grateful as we spent a lot of time in it sheltering from the rain.

Benny Venn and Catherine Norman for the loan of their gas cooker, keeping us supplied with much needed hot drinks and food.

Anne and Tim Whitbourn, whose Tardis tent stored the drawing kit, paperwork and other essential bits and pieces which again was kept tidy by Anne. Anne and Tim organised lots of things to make our life more comfortable by ensuring a plentiful supply of biscuits, tea, coffee etc, midge coils and loo paper.

Janet Daynes and Gordon Fisher provided the tool tent and two gazebos which gave some shelter to the trench from the daily downpours (until a gust of wind blew them to bits!). They also did the usual organisational stuff; sorting tools and bossing people about in Sandy’s absence during the first week.

Chloe Clifford and “Trucky” her 4 wheel drive pickup, transported our tools and kit, to and from site saving us all from more aches and pains.

Thanks to Tony Cannell and all the others who supplied cake!

Until the last few days this season’s weather was appalling, it is amazing that we got anything done at all, but thanks to our intrepid team we managed to achieve most of our aims.

This year the team included: